ASYMMETRIC MODEL OF A VISCOUS ELECTROMAGNETIC
FLUID

V. M. Suyazov

Examples of media where account has to be taken of internal particle rotations, asymmeiric features
of the stress tensor, and the presence of torque stresses (see [1, 2]), are dielectric liquids and artifically
synthesized ferromagnetic and ferroelectric liquids [3].

Ferromagnetic liquids [3] are homogeneous colloidal suspensions of ferromagnetic particles in a
light liquid such as kerosene. The particles typically have a size of 25-100 A, so that they are "single-
domain" uniformily magunetized formations [3]. The concentration of such particles may reach 108 em™3 ,
Agglutination is prevenfedby Brownian movement and the preseunce of a dispersive agent (e. g., oleic acid}
in the liquid. The physical mechanism of macroscopic magnetization of magnetic fluids by an external
field is essentially linked with the fact that the particles have rotational degrees of freedom. Under the
action of a magnetic field, a spatial electromagnetic force and spatial moment appear in the fluid and
orient the particle magnetic dipoles along the field. The orienting action of the field is accompanied by
field energy dissipation in work done by the spatial magnetic moment on the particle rotational displace~
ments against the forces of viscous resistance to these rotations. During oriented rotation of particles
located in a physically infinitesimal volume, changes occur in the magnetization vector per unit volume.
Changes in the magnetization vector can also be produced in such liguids, e.g.,by interaction of the particle
rotations with hydrodynamic movement of their centers of inertia, thermal movement, or changes in the
internal state of the particles themselves [3].

From what has just been said, complicated physico~mechanical processes must clearly ocecur when
a magnetic liquid is subjected simultaneously to mechanical, electromagnetic, and thermal disturbances;
these processes do in fact provide the explanation for the special macroscopic behavior of such liquids [3].

Before the behavior of magnetic and ferroelectric liquids can be described in macroscopic terms, it
is essential to find models for continuous media with internal degrees of freedom [1], such that the in~-
fluence of the average movement of the medium microstructures on its macroscopic behavior is taken
into account. By providing supplementary degrees of freedom in such models, a variety of new interaction
effects between mechanical, thermal, and electromagnetic phenomena may be explained.

A model of a ferromagnetic liquid was offered in [3], under a number of simplifying assumptions:
notably, that the particles orient instantaneously along the field, and that movement of the medium does not
influence the applied field. A nonisothermal model is described below for an isotropic,conducting, and
dielectrically and paramagnetically polarizable liguid in which the particles perform interval rotations [2].

When magnetic media have been described in phenomenological terms in the literature, it has often
been assumed (on the basis of the gyroscopic property of the magnetic moment) that the intensity of mag-
netization vector is proportional fo the internal macroscopic moment of momentum density vector [4]. An
initial hypothesis of this type is justified when describing media in which the magnetic moment is deter-
mined, e.g., by the molecular internal-rotation vector, the electron spins, or orbital electron movement,
etc. When suspensions containing magnetic particles are considered [3], the internal-rotation vector des-
cribes the rotation of the particles as they orient their moments along the field. In view of this, it cannot
be assumed for a suspension that the intensity of magnetization vector is proportional to the particle inter-
nal rotation vector. When developing the present model, the methods of thermodynamics of irreversible
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processes are used; with these methods, the electromagnetic field energy dissipation on relaxation pro-
cesses linked with polarization and magnetization phenomena in the medium can be taken into account under
extremely simple and general assumptions [12]. The field energy dissipation is taken into account by con~
sidering the invariant time derivatives of the polarization and magnetization vectors as the definitive para-
meters [5].

The paper discusses the form of the dependence of the free energy function on the independent defini-
tive parameters, the number and form of which are determined by means of the axiom of equal represen~
tability, the axiom of objectivity [6], and the Clausius—Duhem local inequality. When obtaining the complete
system of definitive linear equations in the thermodynamic forces, the possible dependence of the phenomeno-
logical coefficients on the magnetic field is ignored. I such a dependence is taken into account in the de-
finitive electromechanical equations, hydrodynamic generalizations of the Bloch™ Blombergen [7] and Voigt
[8] equations are obtained. .

Our model is characterized by various kinds of cross effects between mechanical, thermal and electro-
magnetic phenomena. In one of the limiting cases, where there is no interaction between the continuous
medium and the electromagunetic field, the model is the same as the nonisothermal Grade model [2]. In
another limiting case, where dissipative phenomena, linked with intensity of magnetization and polarization
of the medium and with internal rotation of the particles, may be ignored, the model is the same as in [3].

1. The Fundamental Equations of Electrodynamics, Mechanics, and Thermodynamies. Chu's form
[9] of the equations of electrodynamics of a moving medium (polarization model) in the international system
of units is

a 0 .
Vh— 8 =20 - Vx(pxv) i, Veph=— Vepom
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(1.1)

where e and h are the electric and magnetic field strength vectors, p and m are the polarization and inten-
sity of magnetization vectors, i is the electric current density vector, & and y, are the dielectric constant
and permeability in vacuo, V is the Hamilton operator [10], and x denotes vector multiplication. It should
be noted that these equations hold for media whose velocities are substantially less than the velocity of
light in vacuo ¢ = (g uo)"1/2.

The electromagnetic field momentum and energy densities are
g=2S8]¢% w="1,(c0e-e+poh-h), S=exh (1.2)
where S is the Poynting vector.

Using (1.2) in conjunction with (1.1}, the laws of conservation of the electromagnetic field momentum
and energy densities may be obtained in a form convenient for the thermodynamic description of polarized
and magnetized media:
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Here, p is the mass density, 7 and ¢ are the electric and magnetic polarizations per unit mass, 7 is
the electromagnetic tension tensor, which, to facilitate thermodynamic description of the polarization med-
ium, is written as the sum of the vacuum tension tensor 7, and the material tension tensor 71, ¢ is the
ponderomotive force of interaction between the electromagnetic field and the material medium, II is the
density of electrodynamic power consumption, linked with the conductivity and the electric and magnetic
polarizations of the medium, € and 7 are the electric and magnetic effective field strength vectors [9], and
I is the unit dyad. The dot operation (-) denotes the total time derivative. '
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Notice that Eq. (1.3) for the pondermotive force is derived in [11}, where the expression for the
force density is obtained by starting from the general principle of virtual displacements. An iaterpreta-
tion of the various terms in Eq. (1.3) may be found in [11].

A structured material continuum will be considered, at each point of which we find the translation
velocity vector v and angular velocity vector w of the particles from which the point is made up. It is assumedthat
amechanical force with vector f and arbitrary material volume V is applied to each point, while the surface Sof V
is acted onby the force stress vectort,, the momentum stress vector sn, and the electromagnetic tension
vector Tn. The equation of mass conservation, the equations for the variations of momentum and moment
of momentum, the equation of energy variation, and the Clausius —Dubhem inequality for the entropy pro-
duction [6], are written in the integral form
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Here, r is the position vector of the point in the material continuum, ¢ is the heat flux vector, r the
scalar density of the heat source per unit mass and unit time [6], u the internal energy density per unit
mags, 5° =& x7 the electromagnetic energy flux vector through the moving surface 8, J the mean moment
of inertia per unit mass, n the outward normal to the surface S, v, the velocity projection ou the normal
n, n the entropy density per unit mass, v the entropy production density per unit mass, and T the tem-~
perature. When writing the equation of energy variation in (1.4), it is assumed that the moment stresses
only do work on the interval rotational displacements [2].

Use will be made of the following relationships, connecting the moment stress dyad s, the mechanical
stress dyad t, and the electromagnetic tension dyad 7, with the moment stress vector s,, the mechanical
stress vector tn’ and the electromaguetic tension vector 7n [2, 13]:

t,=n-t, s, =n-s, v,=n.¢ {1.5)
Recalling the expressions of dyadic calculus [10] and connecting integration over the surface S with

integration over the continuous volume V, the following are obtained from Egs. (1.4), (1.3), and (1.5):

pr+pV.-v=0, pv'=V.tfpi +¢, V-strixI4itx-I=ple
pu'—(pr —V.q)=1t-.Vv+s.--Vo—tx.I.0 +i-& -4 ppp*-q+pn*.e (1.6)
oTy=pTw —(pr — V.q)—T7'q- VT >0, pz* = pz" — ox p, pu* = pp’ — @ x m

where (x-) denotes that vector multiplication is performed on the left, and scalar multiplication on the
right factors of the dyads, and (- *) means that the left and right factors of the dyads are both multiplied
scalarly.

Introducing the specific free-energy function
¢=u—Tn (1.7)
the local Clausius—Duhem inequality and the equations of energy variation in {1.6) may be written as
pIY =t Vv + s -Vo—txL-otiepuoh* 0 +pa*. e —p(¢'—7) — +-q-VT >0 (1.8)

2. The Linear Definitive Equations. The definitive equations will be considered for an isotropic
liquid with internal particle rotations when the phenomena of heat conductivity, electrical conductivity ,
and dielectric and paramagnetic relaxation are present. It will be assumed that the independent definitive
parameters for the liquid are

oL T, v,e,p,m VI, Vv, Vo, on*, ou* 2.1)
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Here, the gradients of the polarization and intensity of magnetization vectors are not regarded as
definitive arguments. This means that inhomogeneities in the magnetization and polarization of the medium
are ignored in our model [5, 13]. It is possible to make this assumption in view of the uniform distribution
[3, 13] of ferromagnetic "single-domain” homogeneously magnetized particles in a liquid carrier. By
taking the time derivatives of the polarization and magnetization vectors as independent definitive param-
eters, the phenomena of electric and magnetic relaxation in the medium may be described [5]. It can be
geen immediately from the form of the time derivatives in (1.6) that variation of the polarization and
intensity of magnetization vectors due to particle rotations is here taken into account.

On recalling the requirements of the axiom of objectivity [6], it can be shown that the arguments
(2.1) have the objective forms '

p, T, p,m, Vxv—_20, VT, (Vv), Ve, pn*, pp* , (2.2)

where the superscript s denotes the symmetric part of the dyad. When obtaining these forms, the anti-
symmetric dyad (Vv)? was replaced by its equivalent vector ¢. The connections between these latter are

(Vo) = —Ixo, o= s (V¥)x-I=1,Vxv @-3)

The dependent thermomechanical and electromagnetic definitive variables for our model of the liquid
are

ti Ss q, ni (PT 81 1" i (2“4)

According to the axiom of equal representability [6], all the dependent definitive variables (2.4) must
be functions of the same set of independent definitive arguments (2.2), while the converse is not proved.
Conseduently, the free energy function is

CP = (P(p-la T, P. l]l, PP'*, pﬂ*# V XY — 2(!), VTi (Vv)s7 V(l)) (2'5)

The Clausius~Duhem local inequality (1.8) imposes certain restrictions on the form of the free
energy function (2.5). Once these have been found, the dependent definitive variables t, s, &£,7, q, and i
can be obtained in the linear approximation by the methods of thermodynamics of irreversible processes
[12]. In fact, from Eqs. (1.8) and (2.5), regarding the free energy ¢ as a differentiable function of its argu-
ments, and recalling the equation of continuity (1.6), we have

a9 P
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Since, t, 8, 9, 1€, and i are independent of the material time derivatives of the quantities T,AT,
V xV— 2w, PW* pu*, Vv)S , and Vi, and noting that (2.6) is linear in these derivatives, the necessary and
sufficient conditions for Eq. (2.6) to hold for any independent variations of these derivatives are

_ 9 o9 _ 09 ) ap .

pT'r—[t+(p$-p+pa-m~ap )I] A Sl i Rl G el
+ s Vo —txL.o-4 i+ pup* ntpon.e ~-T—q-VT>0 (2.7)
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All in all, the free energy function can be writfen as
e=9¢ ("% T, p,m), n=20¢/T (2.8)

At the same time, according to the axiom of objectivity [6], the free energy function ¢ must be form~-invar-
iant under movement of the spatial reference system as a rigid whole. Recalling Cauchy's theorem (see
[14], p. 144) and Curie's theorem [12], it can be shown that ¢ must in this case be a function of the indep-
endent scalar invariants
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o, T, Jy=pp, Jo=m-m (2.9)
In view of Eq. (2.9) and the identity a-(e x b) = 0, the Clausius—Duhem local inequality (2.7) can be
written as
PTY = (b4 pI)- Vv 4 5. Voo — bx-Lo e - ppafe® (0 — ) + 7%+ (6 — &) — - q- V7 >0 (2.10)
where the following notatioun is used:

89 g , a9 - a9 . 2p. 89
Pt 20 5y 1 F 205 T 2 =205 R g Gy, (2.11)

and p is the hydrostatic pressure in the polarized and magnetized liquid, E € and E" are the local electric
and local magnetic field strength vectors [8], and €—E® and 5 — EN are the dissipative parts of the electric
and magnetic field strength vectors, characterizing the relaxation processes in magnetization and polari-
zation.

To facilitate isolation of the indepeddent forces and thermodynamic fluxes, the dyads t, s, Vv, and
Vw will be written as
t=—pl+P=F—p)I+p" +p" s=sT+s"+5" B =";p-1
Vv =13 Vvl ++ (V)" - (Vv), Vo =1/, V.6l - (Vo) + (Vo)?, (2.12)
2=1;s-.T

where the superscript ¢ refers to antisymmetric dyads and d to the deviator parts of the symmetric dyads.

Using (2.12), the inequality (2.10) for the production of entropy can be written as
L VT BTV SV 0+ P (Vv —20) + d:2b 87 - (Vo)

d d | s , . (2.13)
+ B (V)" tie -k opo™ - (N — W) + prF(e — &) >0

When obtaining (2.13), the dyads B% and (Vv)? and pseudodyads (Vw)? and s¢ were replaced (see [2]) by
their equivalent pseudovectors P%, 1/2V x v and polar vectors b and d. The connections between these
quantities are similar to (2.3).

Notice that, in (2.13), V - v is a scalar, (Vv)d is a dyad, V-w is a pseudoscalar, and (Vw)d a pseudo-
dyad. The quantities VT,& 0% * are polar vectors, and V x v — 2w, puu* are pseudovectors {13, 15]. The
thermodynamic forces VI/ T, €, pupie® in (2.13) are even functions of time t, while 2b, pm*, V x v — 2w are
odd functions [12, 13].

Recalling Curie's theorem and Onsager's interaction relationship [12], the complete system of
phenomenological equations for scalar and pseudoscalar phenomena,linear in the thermodynamic forces,
may be obtained:

{3°:OCLV'V1 §° == T1V'(1) (2°14)
for dyadic and pseudodyadic phenomena

Bt = 23, (Vv)?, 5% =27, (Vo)* (2.15)

and for pseudovector and vector phenomena

N — o1 = hptot* — oy (V x v —20)
P = ag(V x v — 20) + oppon®
d = 27sb + 3, VT 4 vp7* 4158
q=— % VT + 2%, Th + s Tpn* — %, Te (2.16)
i=oye — Lor* 4+ %,VT — 27:b
g— &= lpn* +#gVT - 27b + loe

In Egs. (2.14)-(2.16), the phenomenological coefficients are scalars, characterizing the isotropic
properties of the medium. It may be noted that they are, in general, functions of the density and tempera~-
ture.

It is immediately evident from (2,16) that our model is characterized by thermomechanical, thermo-
electric, thermopolarization, electric~polarization, electromechanical, polarization-mechanical, and
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magnetomechanical cross effects. The sizes of the confributions of these cross effects to the thermo-
dynamic fluxes are determined respectively by the phenomenological coefficients 2uy, %y, 3, lo, V5 4.
Notice, for example, that in the context of this model a displacement of the liquid will be accompanied

by the appearance of magnetization and polarization of the liquid, heat flux, and a mechanico-electrical
curreunt,

The definitive equations (2.16) for the dissipative parts of the electric and magnetic field strength
vectors are equations of molecular equilibrium [8], in which allowauce is made for dissapative forces of
resistance o polarization and magnetization effects and for intersection of thermodynamic fluxes, These
equations can also be regarded as describing the time variations of the polarization and magnetization
vectors, due to convective moment of the medium, internal rotations, the process of electric and magnetic
relaxation, and cross effects.

When obtaining Eqgs. (2.14)-(2.16), no account was taken of possible dependence of the phenomenologi-
cal coefficients on the maguetic field {7, 12]. If such a dependence is brought in, nonlinear terms in the
field strengths and thermodynamic forces appear in (2.14)-(2.16). Such a dependence will only be consid-
ered here for the coeffients of the electromechanical definitive equations (2.18). From purely practical
considerations, the quantity n — E" will be regarded as an independent thermodynamic force. Disregarding
the intersections of the thermodynamic fluxes € — E® and puoi* with the other fluxes, the following linear
definitive equations are obtained for them from (2.13):

e—pe=Loon*,  pup* =R.(q— n) (2.17)

E

Here, the symmetric parts 15 and RS, and antisymmetric parts 12 and R?, of the dyads of pheno~
meunological coefficients L and R satisfy the Onsager interactioun relationships [7, 13]

L* () = L° (— ), R* () =R* (=)
IU

1a("l) e ('“ 'V]), r’ (1]) = — 7" (.._ 'rl) (2918)

f

When obtaining these expressions, the antisymmetric dyads L% and R? were replaced by their equivalent
pseudovectors I and ¥@. It is clear from (2.18) that the symmetric parts of the dyads of phenomenological
coefficeints are even functions of the magnetic field, while the pseudovectors are odd functions.

For an isofropic liquid, Eq. {2.18) will be satisfied iu the linear approximation iny by puiting
L=l —-IxMhn R=nrl—TIxrn (2.19)
Using (2.19) and (2.17),
& — p& = Lpr* -+ hpm® x 1, ppop* = ry (n— pn) — raph X M (2.20)

This last shows that, when the coefficients are regarded as dependent on the maguetic field, the
definitive equations acquire extra terms which take account of the change in the polarization and mag-
netization vectors, due to the gyrotropic properties of the medium [13] with scalar coefficient of gyrotropy
A and to the gyroscopic property of the magnetic moment [13], with magnetomechanical ratio r,,

' Using Egs. (2.3), (2.12), and (2.14)~(2.16), the equation of continuity, the equation of motion (1.6), and
the inequality (2.10) for the entropy production can be written as

OV = — Vp £ V (0qV-v) + 2V [0 (VV)?] + V x [¢3 (2@ — V x V)]
— Vx (oppop*) +-0f +@, o' +pV-v=0

pJ = V (1,7-0) + 2V- 1, (Vo)) + 2V - [13(Ve)] = V- (ml x VT)

— V(oI x @%) — V- (Yol x £) 4205 (V X V—20) + 20,,0pp* + P x &+ flom x (2.21)

O = 2 #a (V)2 - 0y (V- V) - 2 (V- 0)2 + &rsb® - by (ppop*)? -+ (pr*)?

1 0,87 - 0 (VX V — 20) + 2048+ VT - dysom* b + 20, (V) <(VV)! + 21, (Vo) - - (Va)"

Since Egs. (2.21) for the entropy production, which is quadratic in the thermodynamic forces, must
be positive, the following restrictions are obtained on the phenomenological coefficients:
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Q1 Vi G2 YZ«_]?p Oz Voo %10 Opp b > 0, %2 << 0ytq, 2947 << Uiy (2,22)
The terms with coefficients a,, ng, Vs M3, 9, characterizing cross effects between thermodynamic
forces of different time parities, make no contribution to the production entropy, so that the signs of these

coefficients remain indeferminate.

The system of equations (1.1), (1.68), (2.16), and (2.21) describes the motion of a nonisothermal,elec~
trically conducting, polarized, and magnetized liquid with particles subject to internal rotation, in the con-
text of electric andmagneticrelaxation effects. This is not a closed system in the unknowns p, 1, p, v, @,
p, m, e, h, and T, To obtain a closed system, use must be made of the equations of state (2.18) and (2,11),
which counnect the variables p, 1, p, e, h, m, p, and T. For example, if the free energy is assumed to be a
linear function [13] of the variables J; and J,, with coefficients 1/2 (0&x)~! and Ho(2pK)™ 1respectively, the
expressions E® = (%0x)7!p and En = K~'m are obtained from (2.11) for the local electric and local mag-
netic field strength vectors, and these close the system with respect to the variables e, h, p, and m. In
this case, the definitive equation (2.20), déscribing the time variation in the magnetization vector, can be
regarded as a hydrodynamic generalization of the modified Bloch's equation [7] (with one relaxation time,
equal to K/r;). The definitive equation (2.20) for the polarization vector describes a medium of the same
type as Voigt's dielectric medium [8]. If the inertia contribution to the change of polarization is neglected
in Voigt's definitive equation [8], Eq. (2.20) can be regarded as the hydrodynamic generalization of Voigt's
equation.

Notice that, if the quantities m, p, de/8t, v x &g, are neglected in Eqs. (1.1), (1.6), (2.16), and (2.21),
the result is a system of equations describing the conductive liquid of Grade's model in the approximation
of magnetohydrodynamics [16]. The liquid model in question is characterized by mechanical-electric,
thermomechanical, and thermoelectric cross effects.

In the absence of interaction between the electromagnetic field and the material medium, our present
model is the same as Grade's nonisothermal model [2]. In the case when the quantities p x v, m x v, w,
V, v, s, i, dush /0t, 08/ Bt,vx £4e, v x yh can be neglected and the phenomena of dielectric and para-
magnetic relaxation are absent, our model is the same as that of [3].
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